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Abstract—This paper is devoted to linear multivariable controlled plants subjected to unknown
bounded external disturbances. We propose a method for designing discrete-time output-
feedback controllers ensuring desired or achievable performance indices: accuracy, settling time,
and stability margins for each control loop at the plant’s input. The controller design approach
is based on the standard H∞ optimization procedure formulated in a particular way. Robust
properties of the systems designed are investigated using the Nyquist plots of separate open
control loops with break points at the plant’s inputs. The absolute stability of the closed-loop
system with sectoral nonlinearities at the plant’s inputs and a relation with the radius of sta-
bility margins are proved. A numerical example is provided to demonstrate the effectiveness of
this approach.
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1. INTRODUCTION

Digital controllers have taken a dominant position in manufacturing, power engineering, aviation,
robotics, and many other industries. Therefore, following the real demands of design engineers, the
problem of designing discrete-time controllers for multivariable systems via engineering performance
indices becomes unprecedentedly topical and important.

At the same time, modern controller design methods based on a measured output—H2, H∞,
and L1 (l1) optimization, μ-synthesis, and modal control—usually consider only some performance
indices or even neglect them.

In classical automatic control theory, which involves frequency-domain methods with the Nyquist
criterion, engineering performance indices were directly used to construct controllers for single-
variable systems [1, 2]. These results were generalized largely due to the efforts of V.V. Solodovnikov
in the well-known method of logarithmic amplitude response (Bode plot) [3, 4]. Note that the
method has demonstrated unsurpassed practical effectiveness during the last 75 years. In the
discrete-time case, it has acquired a complete form thanks to V.A. Besekerskii et al. [5, 6]. How-
ever, the inconsistency of engineering performance indices (accuracy, settling time, and stability
margins) was evident even for single-variable systems. Unfortunately, due to its very essence, the
method of logarithmic amplitude response is generally inapplicable to the class of multivariable
systems. Difficulties in the mathematical formalization of engineering performance indices and the
development of an appropriate apparatus fell out of mathematicians’ sight for a long time. Only
with the emergence of L1 (l1) optimization [7, 8] and H∞ optimization [9–11], accuracy criteria
(the maximum error for each controlled variable) under arbitrary bounded external disturbances
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and the H∞ norm of the sensitivity matrix have come to be used as accuracy and robustness indices
in multivariate systems theory. At the same time, according to the analysis of the simplest exam-
ples [12], l1 controllers give the maximum possible gain of an open-loop system if the closed-loop
one is stable. However, this condition leads to small phase and gain margins determined using the
Nyquist plot of the open-loop system, which is unacceptable in practice. In addition, discrete-time
l1 controllers may have an unpredictably high order [8], which is also not welcome in practice
and inevitably decreases stability margins [12]. Continuous-time L1 controllers are described by
irrational transfer functions [7], which strongly reduces their potential in applications.

The method of invariant ellipsoids [13] has removed the fundamental limitations on the realiz-
ability of L1 (l1) controllers. Nevertheless, the issue of phase and gain margins acceptable from a
practical point of view is still open in this promising approach.

In this paper, we estimate the stability margins of a system by their radius [14, 15]. By definition,
this value is the maximum radius of the circle centered at the critical point (−1, j0) that is not
intersected by the Nyquist plot of an open-loop system; for example, see [16], where it was called
“stability radius.”

The design procedure of discrete-time controllers based on the measured output is complicated
by the following important factors:

1. Generally speaking, even the full state-feedback controller [12, 17] does not ensure an accept-
able radius of stability margins in practice. This is always possible only for stable plants under a
small sampling period.

2. For discrete-time controllers based on the full state vector (the more so for those based on
the output), the achievable control error is bounded below by some value that cannot be improved
by any linear controller [18].

3. Even in the continuous-time case, the system’s performance (characterized by the degree of
stability) is limited by the absolute value of the real part of the plant’s zero nearest to the imaginary
axis [16, 19, 20]. In addition, increasing the degree of stability catastrophically reduces the radius of
stability margins, which is not applicable in practice. Similar phenomena occur in the discrete-time
case [12, 17].

This paper is devoted to the problem of designing discrete-time controllers for multivariable
plants via given or achievable engineering performance indices: the control error for each controlled
variable, the settling time, and the radius of stability margins at the plant’s input. The solution
involves an H∞ optimization problem constructed in a special way. In this sense, the approach
below develops the result of the earlier paper [17] by introducing unmeasured polyharmonic external
disturbances with unknown amplitudes (with a bounded sum of harmonic amplitudes for each
component of the disturbance), frequencies, and an unbounded number of them. Such a class of
external disturbances covers all the real signals that cause controlled variables to deviate from zero
in practical stabilization systems [21]. This paper is an extended version of the results presented
in [22, 23].

2. PROBLEM STATEMENT

Consider a controllable and observable discrete-time model of a continuous-time plant described
by the difference equations

x(k + 1) = Ax(k) +B[u(k) + w(k)],

y(k) = Cx(k), k = 0, 1, 2, . . . ,
(1)

where x(k)∈R
n is the state vector of the plant, u(k)∈R

m is the control input of the plant,
y(k)∈R

m2 is the measured and, simultaneously, controlled output of the plant (the controller’s
input), and w(k)∈R

m is the vector of external disturbances. The plant’s matrices A,B, and C are
known.
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Fig. 1. (a) The arrangement of the eigenvalues of the matrix Acl

and (b) the block diagram of the closed-loop control system.

The plant (1) is closed by a discrete-time stabilizing dynamic output-feedback controller of the
form

xc(k + 1) = Acxc(k) +Bcy(k),

u(k) = Ccxc(k) +Dcy(k), k = 0, 1, 2, . . . ,
(2)

where xc(k)∈R
nc is the state vector of the controller (nc � n) and Ac, Bc, Cc, and Dc are numerical

matrices.

The components of the external disturbance w are bounded functions:

wi(k) =
∞∑
j=1

wij sin(ωjkh+ φij), i = 1,m, (3)

where h is a sampling period. The amplitudes wij � 0, phases φij , i = 1,m, and frequencies ωj,
j = 1,∞, of the disturbance components are unknown.

By assumption, the external disturbance is bounded in the following sense:

∞∑
j=1

wij � w∗
i , i = 1,m, (4)

where w∗
i are given numbers. In other words, ∀k |wi(k)| � w∗

i .

The errors for the controlled variables are defined by

yi,st = sup
k�kp

|yi(k)|, i = 1,m2, (5)

where the number kp determines the settling time of the system, tp = kph.

The number of cycles kp is determined by the degree of stability of the discrete-time system, 1/α.
This means the condition

|λi(Acl)| � 1

α
, i = 1, n+ nc,

where λi(·) are the eigenvalues of the matrix Acl of the closed-loop system (1), (2):

Acl =

[
A+BDcC BCc

BcC Ac

]
.

Figure 1a provides the geometric interpretation of the last inequality for λi(Acl).
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In applications, the required value of α is assigned based on the desired number kp (tp = kph)
as follows [17]:

α ≈ e(3h)/tp . (6)

This condition is immediate from the well-known relation α = eβh between the eigenvalues of
continuous- and discrete-time systems. (That is, the degree of stability of a continuous-time sys-
tem, β, and the settling time satisfy the approximate formula tp ≈ 3/β.) The relation (6) gives an
acceptable estimation accuracy from the engineering point of view, provided that the eigenvalues
of the matrix Acl contain no multiples lying nearest to the circle of radius 1/α. As a rule, this
requirement holds in applications.

The closed-loop system (1), (2) has the radii of stability margins 0 < ri < 1, i = 1,m, at the
plant’s physical input if the diagonal radii matrix R = diag[r1, . . . , rm] satisfies the frequency-
domain inequality [22][

I +W (e−jωh)
]� [

I +W (ejωh)
]
> R2, ω ∈ [0, π/h], (7)

where W (z) = −K(z)W0(z) is the transfer matrix of system (1), (2) with break points at the plant’s
physical input, W0(z) = C(z I −A)−1B is the plant’s transfer matrix relative to the control, and
K(z) = Cc(z I −Ac)

−1Bc +Dc is the transfer matrix of the controller.

The accuracy requirements for the system are specified by the inequalities

yi,st � y∗i , i = 1,m2, (8)

where y∗i > 0 are given numbers (the desired control errors).

Inequalities (8) are not always realizable: an appropriate controller cannot be found for some y∗i ,
i = 1,m2. The same concerns the requirements (6) and (7) for the settling time and the radii of
stability margins. All these requirements are mutually contradictory [12].

Problem 1. It is required to find a stabilizing controller of the form (2) such that:

1) The accuracy requirements

yi,st � γy∗i , i = 1,m2, (9)

hold with some achievable number γ > 0.

2) System (1), (2) possesses some achievable radii of stability margins ri, i = 1,m, in inequal-
ity (7).

3) The eigenvalues of the matrix Acl of the closed-loop system (1), (2) satisfy the condition
|λi(Acl)| � 1/α, i = 1, n + nc, where α > 1 is some achievable number.

The coefficient γ in conditions (9) is some number, usually γ > 1. It indicates the degree to
which the original accuracy requirements (8) are overestimated compared to the really achievable
ones (9).

3. PROBLEM SOLUTION BASED ON H∞ OPTIMIZATION

To solve Problem 1 using H∞ optimization, we need to represent the closed-loop system equa-
tions (1), (2) in terms of transfer matrices:

y = W0(z)z0, u = K(z)y,

z0 = u+ w, z1 = R0z0, z2 = Q1/2y,
(10)
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where z1 ∈R
m and z2 ∈R

m2 are the vectors of controlled variables used in the design procedure,
with z1 defining the desired radii of stability margins at the plant’s input and z2 ensuring accuracy;
R0 = diag[r01, . . . , r

0
m], r0i ∈ (0, 1), i = 1,m, is the matrix of the desired radii of stability margins;

finally, Q1/2 is a diagonal weight matrix. Figure 1b shows the block diagram of the system of
equations (10).

The vectors w and z0 are related by the transfer matrix of sensitivity relative to the input,

Tz0w = [I +W (z)]−1.

This matrix is used in the design procedure to ensure stability margins (7).

The vector of controlled variables z2 = Q1/2y is introduced to satisfy the accuracy require-
ments (8), (9). It represents the vector y weighted by a diagonal matrix Q = diag[q1, . . . , qm2 ] with
positive elements qi > 0, i = 1,m2. Appropriately assigned elements of the matrix Q ensure the
required (or achievable) accuracy for the controlled variables yi, i = 1,m2; see the proof of this fact
below.

Let us introduce the extended vector of controlled variables z� = [z�1 , z�2 ] and denote by Tzw

the matrix relating z to the vector w. Then

z =

[
z1
z2

]
= Tzww =

[
Tz1w

Tz2w

]
w =

[
R0Tz0w

Q1/2Tyw

]
w,

where Tyw = W0(z)[I +W (z)]−1 is the transfer matrix relating w and y.

The desired settling time is ensured if the eigenvalues of the matrix Acl of the closed-loop sys-
tem (1), (2) satisfy the inequality |λi(Acl)| � 1/α. To ensure this condition, we apply the following
technique [24]: replace the plant’s matrices A and B with the shifted ones Ã = αA and B̃ = αB,
respectively, and then find the shifted controller stabilizing the shifted closed-loop system:

|λi(Ãcl)| = |λi(Acl)|α < 1, i = 1, n + nc,

Ãcl =

[
Ã+ B̃DcC B̃Cc

B̃cC Ãc

]
,

(11)

where Ãc, B̃c, Cc, and Dc are the shifted controller’s matrices.

For the original (unshifted) problem, the output-feedback controller (2) ensuring the desired
degree of system stability (as well as the stability margin and accuracy requirements) has the
following matrices [17, 24]:

Ac = Ãc/α, Bc = B̃c/α, Cc, Dc. (12)

Remark 1. An analog of the technique [24], albeit for full state-feedback controllers, is well
known in the Western literature; for example, see [25]. For controllers based on the measured
output in the continuous- and discrete-time cases, this approach was first proposed in Russia.
In this context, we refer to [24] and the bibliography therein.

Let the controller with matrices Ãc, B̃c, Cc, and Dc minimize the H∞ norm of the transfer
matrix of the shifted closed-loop system (with matrices Ã and B̃):

‖Tzw(e
(−β+jω)h)‖∞ < γ, (13)

where γ is a given number or the value to be minimized.
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Remark 2. If the shifted problem (13) is solved, the controller (2) with the matrices (12) will also
ensure the corresponding frequency inequalities for the unshifted transfer matrix [17, 24]. Therefore,
the solution of the shifted problem (13) satisfies the inequality

‖Tzw(e
jωh)‖∞ < γ (14)

and, for each block of this matrix, we obtain the following condition similar to (14) (in particular,
see [26]):

‖R0Tz0w(e
jωh)‖∞ < γ, ‖Q1/2Tyw(e

jωh)‖∞ < γ. (15)

The first inequality in (15) can be equivalently written as [17, 19]

[I +W (e−jωh)]�[I +W (ejωh)] > R2, ω ∈ [0, π/h],

where R = R0/γ (see [27]). It represents the target inequality (7).

The second inequality in (15) has the equivalent form

T�
yw(e

−jωh)QTyw(e
jωh) < γ2I, ω ∈ [0, π/h]. (16)

Lemma 1. Under inequality (16), the errors for the controlled variables of the stable closed-loop
system (1), (2) with disturbances from the class (3), (4) satisfy the inequalities

qiy
2
i,st < γ2

⎛⎝ m∑
j

w∗
j

⎞⎠2

, i = 1,m2. (17)

The proof of Lemma 1 is given in the Appendix.

With the elements of the diagonal weight matrix Q assigned by

qi =

(∑m
j w∗

j

)2
(y∗i )2

, i = 1,m2, (18)

inequalities (17) directly imply the target inequalities (9) of the problem under consideration.

Summarizing, we now formulate the main result of this paper.

Theorem 1. The controller (2) with the matrices (12) solves Problem 1 if the coefficients of the
weight matrix Q in the shifted H∞ optimization problem (13) are assigned by (18). The radii of
stability margins at the plant’s input determine the diagonal matrix R = R0/γ, where γ is obtained
by solving problem (13).

Here, the number γ (usually γ � 1) also determines the degree of achievability for the radii of
stability margins given by the diagonal matrix R0.

Note that passing from inequalities (13) to (14) and (15) makes the above results sufficient as
well.

4. A PHYSICAL INTERPRETATION OF THE RADII OF STABILITY MARGINS

From the practical point of view, an important result can be obtained by studying the frequency
matrix inequality (7) when breaking the control loop at only one ith input. This approach to
analyzing the stability margins of systems matches engineering practice: it can be experimentally
verified on a real plant. Let us introduce the following notation: wi(z) is the transfer function of the
system with break points at the ith input; ti(z) is the transfer function relating the ith component
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z0iw1i ui

z1i

ri
0

w(z)~ z0iw1i –ui

z1i

ri
0

–1

–wi(z)

Fig. 2. The block diagram with the transfer function wi(z).

of the vector w to the ith component of the vector z1 (when all other inputs in Fig. 1b are zero).
This break can be represented by the block diagram in the left-hand part of Fig. 2, where w̃(z) is
the transfer function obtained by closing all feedback loops in Fig. 1b except for the ith one.

The right-hand part of Fig. 2 illustrates an equivalent form involving wi(z); in this case, obvi-
ously, wi(z) = −w̃(z).

The transfer functions ti(z) and wi(z) are related to each other by the formula

ti(z) = r0i [1 + wi(z)]
−1. (19)

On the other hand, the transfer function (19) is the ith diagonal element of the transfer matrix Tz1w.
This matrix satisfies the first inequality in (15); for its ith diagonal element we have [26]

|ti(e−jωh)| < γ ⇔ ti(e
−jωh)ti(e

jωh) < γ2.

Due to (19), this finally yields a scalar analog of (7):

[1 + wi(e
−jωh)][1 + wi(e

jωh)] > r2i , i = 1,m, ω ∈ [0, π/h],

where ri = r0i /γ.

This condition with its geometric interpretation [17, 26] leads to the following result.

Theorem 2. Under the frequency matrix inequality (7), the Nyquist plot of system (1), (2) broken
at the plant’s ith input does not touch the circle of radius ri centered at the critical point (−1, j0).

The radius ri of stability margins can be determined via a real experiment, which is crucial in
applications. If the open-loop system in Fig. 2 is stable, the Nyquist plot for wi(e

jωh) can be directly
drawn. In the otherwise unstable case, it is necessary to take the frequency response of the closed-
loop system shown in Fig. 2, which is the transfer function t(ejωh) relating the ith components of the
vectors w1 and z0 : t(z) = [1 + wi(z)]

−1. Then the radius of stability margins equals ri = 1/‖t‖∞,
see [11, 15–17]. In other words, it is determined by the inverse of the maximum of the absolute
value of the frequency response of the sensitivity function t(ejωh) of the loop shown in Fig. 2.

According to Theorem 2, the Nyquist plot w(ejωh) does not intersect the closed interval
[−1− ri, −1 + ri] of the real axis. In turn, by the circle criterion of absolute stability [28],
system (1), (2) remains stable in this case if a nonstationary sector nonlinearity from the sec-

tor
[

1
1+ri

, 1
1−ri

]
is introduced into the ith input channel of the plant. For example, it can be a

nonstationary gain li(k) with an arbitrarily changing value within this interval.

The multivariable circle criterion allows strengthening this result for the case of nonlinearities
introduced in each input channel. The closed-loop equations are written as

u = −W (z)ζ, ζ = u. (20)
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Considering the design method of the controller (2), such a system is asymptotically stable, so
the minimal stability condition of the circle criterion holds. The second (linear) equation in (20) is
replaced by a vector nonlinearity of the form

ζ = φ[k, u(k)], (21)

where each component of the nonstationary vector function ζ ∈R
m lies in a sector:

αi �
φi[k, ui(k)]

ui(k)
� βi, φi[k, 0] = 0, i = 1,m, (22)

where αi < 1 and βi > 1 the lower and upper bounds of the sector nonlinearity.

According to the circle criterion [29, 30], system (20)–(22) is absolutely stable under the fre-
quency inequality

Re
{
[I + αW (e−jωh)]�τ [I + βW (ejωh)]

}
> 0, ω ∈ [−π/h, π/h], (23)

where Re {Y } = [Y �(e−jωh) + Y (ejωh)]/2 denotes the Hermite part of the complex matrix Y. The
matrix τ is a positive definite diagonal matrix, α = diag{αi} and β = diag{βi}, i = 1,m, are
diagonal matrices.

Condition (23) with the matrices α= diag
{

1
1+ri

}
, β =diag

{
1

1−ri

}
and τ =diag{(1+ ri)(1− ri)},

i = 1,m bring to the inequality

Re
{
[I +R+W (e−jωh)]�[I −R+W (ejωh)]

}
> 0, ω ∈ [−π/h, π/h],

where R = diag{ri} is a diagonal matrix. In turn, the last inequality implies

Re
{
[I +W (e−jωh)]�[I +W (ejωh)]−R2 + V (ejωh)

}
> 0, ω ∈ [−π/h, π/h],

where the skew Hermitian matrix V (ejωh) = RW (ejωh)−W�(ejωh)R satisfies the condition
Re {V (ejωh)} = 0. This inequality can be represented in the form (7), and the following result
is true accordingly.

Theorem 3. Assume that Problem 1 is solved and/or the matrix inequality (7) holds. Then the
nonlinear system (1), (2), (12) with nonstationary sector nonlinearities (21) from the class (22)
with αi = 1/(1 + ri) and βi = 1/(1 − ri), i = 1,m, introduced for each physical input channel of the
plant (1), is absolutely stable (for w = 0).

In a particular case, the nonlinearities can be treated as time-varying gains li(k) : ζi(k) =
li(k)ui(k) with the bounds αi and βi, i = 1,m from Theorem 3, which can independently and
arbitrarily change their values within the intervals specified. This fact emphasizes the robust prop-
erties of the systems designed.

5. A NUMERICAL EXAMPLE

As an illustrative example, we design a controller for the discretized model of a multi-motor
electric drive of a pipe-electric welding machine, which was used in continuous time in [21, 31].
Such systems have clear applications and are known in the literature as parallel systems; see the
Parallel Systems section in [32, Ch. 11].

Figure 3 shows the block diagram of this machine. The control actions u1 and u2 represent the
voltages applied to the thyristor converters, which are modeled by inertial links with parameters
kthyri and Tthyri, i = 1, 2, respectively. Their outputs xi, i = 1, 2, are the output voltages of the
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Fig. 3. The block diagram of the pipe-electric welding machine.

thyristor converters supplied to the armature circuits of the motors, which are modeled in the
standard way using the parameters Tei and ki, i = 1, 2 (the electromagnetic time constants of the
armature circuits and the corresponding gains); cmi and cei, i = 1, 2, are the design constants of
the motors. The states x3 and x4 represent the armature currents of the drive motors. The
moments developed by the motors are denoted by Mi = cmixi+2, i = 1, 2; finally, f = Mloa is the
total load resistance moment and J is the total moment of inertia reduced to one of the motor
shafts. The state x5 = ω is the angular velocity of the motor shafts (the main controlled variable).
The measured variables are the currents of the motors and the angular velocity of their shafts.
According to numerical experiments with the angular velocity of motors y3 = x5 taken as the only
controlled variable, the equal-load requirement may fail for motors and, most importantly, the
stability margins for the measured variables y1 = x3 and y2 = x4 (motor currents) at the plant’s
output may be very small [33], which is unacceptable in practice. Therefore, y1 = x3, y2 = x4,
and y3 = x5 are chosen as the controlled variables. The numerical parameters of the model were
described in [33].

Note an important feature of this model: the control actions u1 and u2 and the external dis-
turbance are applied at essentially different points of the block diagram in Fig. 3. As a result,
the design approach described above cannot be used directly. In addition, the internal feedback
loops formed by the coefficients cei, i = 1, 2, reduce the effect of the disturbance f on the main
controlled variable x5 = ω (the angular velocity of the motor shafts). Let these loops be neglected,
which worsens the plant in terms of accuracy. Then, having separated from f = f1 + f2 the resis-
tance moments f1 and f2, applied to the first and second motors, respectively (as actually happens
in practice) and assuming f1 = f2, we bring the disturbances to the plant’s inputs u1 and u2 in
the form of disturbances w1 and w2. In this case, the bounds f∗

1 and f∗
2 of the disturbances are

recalculated into the bounds w∗
1 and w∗

2 by the formulas

w∗
i =

f∗
i

kicmikthyri
, i = 1, 2,

which is true for constants f1 and f2. We will demonstrate that the worst-case disturbance for the
closed-loop system with the controller designed by the above approach is indeed little different from
the step disturbance in terms of the control error.
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The continuous-time model of this machine is described by the state-space equations

ẋ = Ax+B2u+B1f, y = Cx

with the numerical matrices

A =

⎡⎢⎢⎢⎢⎢⎣
−100 0 0 0 0
0 −83.33 0 0 0

137.81 0 −11.29 0 −1123.16
0 132.46 0 −11.07 −1101.13
0 0 0.25 0.25 0

⎤⎥⎥⎥⎥⎥⎦ ,

B1 =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0

−0.03

⎤⎥⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎢⎣
16 120 0

0 13 702
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎣ 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎦ .

The system is discretized with a period of h = 0.01 s.

According to Problem 1, the following requirements are imposed on the performance indices of
the closed-loop system:

• Under |f | � f∗ = 600 Nm, the desired errors for the controlled variables are

y∗1 = y∗2 = 375 A, y∗3 = 1 rad/s.

In addition, the system motors must be equally loaded: y1,st ≈ y2,st.

• Achievable radii of stability margins for the control actions u1 and u2 must be ensured in the
system.

• The desired settling time of the system is tp = 0.25 s, which gives α = e(3h)/tp = 1.0618 and,
consequently, |λi(Acl)| < 1/α = 0.9418.

The controller was designed in MATLAB by forming and solving the H∞ optimization prob-
lem (13). To assign the diagonal weight matrix Q1/2, we find the bounds of the equivalent external
disturbances wi, i = 1, 2, applied in accordance with the control actions. Using the above formulas
for w∗

i , i = 1, 2, we obtain

w∗
1 =

f∗
1

k1cm1kthyr1
= 0.0188 V, w∗

2 =
f∗
2

k2cm2kthyr2
= 0.0185 V,

where f∗
1 = f∗

2 = 300 Nm, and the drive parameters correspond to [33]: k1 = 12.21 1/Ω,
cm1 = 8.1 Nm/A, kthyr1 = 161.2, k2 = 11.965 1/Ω, cm2 = 8.262 Nm/A, and kthyr2 = 164.424.
Finally, using (18), we obtain the weights

q
1/2
1 =

w∗
1 + w∗

2

y∗1
≈ 10−4Ω, q

1/2
2 = q

1/2
1 ≈ 10−4Ω, q

1/2
3 =

w∗
1 + w∗

2

y∗3
= 0.037

Vs

rad
.

The matrix R0 of the desired radii of stability margins is assigned in the form

R0 = diag[r0 r0], r0 = 0.7.
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Fig. 4. Simulation of the closed-loop system under f = 600 Nm: the outputs y1 and y2 (left) and y3 (right).

Solving the H∞ optimization problem yielded the discrete-time controller K(z) with the state-
space matrices

Ac =

⎡⎢⎢⎢⎢⎢⎣
0.345956 −0.009928 −0.000697 0.0025 −0.056187
−0.008343 −0.767521 −0.017857 −0.047834 0.007471
0.073728 −0.017642 −0.698692 −6.373 × 10−5 −0.009095
−0.100859 0.798642 −0.001513 0.030154 −0.088679
2.788025 0.022924 0.041603 0.024368 −0.465253

⎤⎥⎥⎥⎥⎥⎦ ,

Bc =

⎡⎢⎢⎢⎢⎢⎣
−0.000617 −0.017424 −2.871137
0.792006 −1.103803 1.684791
−0.99029 −0.770164 12.026577
−0.582481 0.746858 −0.299745
0.011564 0.039367 11.985945

⎤⎥⎥⎥⎥⎥⎦ , Cc =

⎡⎢⎢⎢⎢⎢⎣
0.006534 0.005311
0.000239 −0.001499
−0.002763 −0.002579
0.000115 −9.579 × 10−5

−0.000843 −0.001116

⎤⎥⎥⎥⎥⎥⎦
�

,

Dc =

[
−0.002889 −0.001835 −5.217 × 10−6

−0.001533 −0.003218 −4.493 × 10−6

]
.

In addition, γ = 0.866, which gives a guaranteed radius of stability margins r1 = r2 = r0/γ = 0.808
at the plant’s inputs and is very significant from the engineering point of view. The factual values
of r1 and r2 will be determined below.

The eigenvalues of the closed-loop system matrix Acl satisfy the inequality

max |λi(Acl)| = 0.8019 < 1/α.

Hence, the settling time requirements hold.

Figure 4 presents the simulation results for the closed-loop system under the step external dis-
turbance f = 600 Nm. On the left, the solid line corresponds to transients for y1 and the dashed
line to those for y2; on the right, the solid line corresponds to transients for y3. According to the
transient plots, the accuracy requirements are true for all controlled variables, and the equal-load
requirement of the drives holds for y1 and y2. The same figure demonstrates that the factual settling
time matches the desired one tp = 0.25 s.

Figure 5 shows the amplitude-frequency response of the transfer function |Ty3f | of the closed-loop
system relating the external disturbance to the main controlled variable, scaled by a disturbance
amplitude of 600. Its maximum falls at the frequency ω = 7.14 rad/s, being equal to 0.945 rad/s.
The absolute value of the frequency response for the step disturbance (at ω = 0) is 0.944 rad/s.
In other words, the error under the worst-case disturbance slightly differs from the error under the
step disturbance, as stated above.
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Fig. 5. The absolute value of the amplitude-frequency response |Ty3f |.

Fig. 6. The radii of stability margins and Nyquist plots (break points at inputs):
w1(z) (left) and w2(z) (right).

Fig. 7. The radii of stability margins and Nyquist plots (break points at outputs).

Note that the steady-state error for the main controlled variable turned out to be very close to
the given one, indicating a low degree of sufficiency of the design procedure by this performance
index.

The factual robust properties of the closed-loop system at the input and output are determined
using the Nyquist plots of the open-loop system drawn by breaking at the corresponding points.

Figure 6 provides the Nyquist plots of the open-loop system when the break points are at the
inputs u1 (on the left) and u2 (on the right). Also, see the critical points (−1, j0) in this figure,
around which circles with radii r1 = 0.881 (on the left) and r2 = 0.889 (on the right) are drawn.
These circles determine the factual radii of stability margins at the plant’s input.
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Next, Fig. 7 shows the Nyquist plots of the system when the break points are at the outputs:
from left to right, the cases of y1, y2, and y3, respectively. As for the inputs, the radii of the circles
in Fig. 7 are equal to the corresponding factual radii of stability margins at the outputs: r1 = 0.882,
r2 = 0.887, and r3 = 0.803.

Note that the controller designed ensures high stability margins at all inputs and outputs.

Of particular attention is the stability of the systems broken at separate inputs and outputs of
the plant. This is quite important under the possible saturation of the corresponding signals and
their shelving.

Finally, we emphasize that the discrete-time controller ensures significantly higher radii of sta-
bility margins for all control and measured variables (except for the main one, angular velocity)
than the continuous controllers for this plant [21, 31, 33]. In particular, the radius of stability
margins was about 0.45 at all outputs (where it was ensured) and inputs and 0.99 for the main
controlled variable.

6. CONCLUSIONS

This paper has proposed an approach to designing discrete-time output-feedback controllers for
multivariable systems that ensure desired or achievable control performance indices: errors for each
controlled variable, settling time, and the radii of stability margins at the plant’s input.

The class of external disturbances considered above is rather wide and covers elementwise
bounded functions: ∀k |wi(k)| � w∗

i , i = 1,m. Note that the continuous prototype of such dis-
turbances is continuous and piecewise differentiable functions of time; therefore, they can be rep-
resented by an absolutely convergent Fourier series [21]. Only such disturbances are encountered
in engineering practice.

We list several advantages of the design method over the known ones:

1. The original problem is solved via the standard discrete H∞ optimization procedure with
analytical formulas for assigning the weights of the objective functional for a given accuracy.

2. There is a very important, from the engineering point of view, physical interpretation of
the frequency matrix inequality for the transfer matrix of the open-loop system in the language of
Nyquist plots of the system broken at the ith input of the plant. (In contrast to [21], this inequality
ensures individual radii of stability margins.)

3. The absolute stability of the closed-loop system with sector nonlinearities at possibly all
physical inputs of the plant has been proved. For each input, the size of the nonlinearity sector
is uniquely determined by the radii of stability margins ensured by the controller designed. This
feature is also crucial from the engineering point of view.

4. The controller’s order does not exceed that of the plant, which is very valuable in applications.

5. The degree of sufficiency of this method is significantly lower compared to those proposed
previously [21, 31] owing to a two-fold reduction in the number of block elements in the transfer
matrix of the closed-loop system (13), which is subjected to the H∞ optimization procedure.

The latter is made possible by applying an external disturbance consistently with a control
action. This condition can be considered to be valid for the vast majority of electromechanical
systems: physically a control action from a digital controller is applied to a plant indirectly, through
an actuator representing a power amplifier with a gain much greater than unity. This explains
the significantly greater influence of a disturbance applied consistently with a control action on
controlled variables compared to that applied as a load moment. The controller design approach
proposed above has been illustrated by a numerical example arising in engineering practice (a pipe-
electric welding machine operating at the Elektrostal Heavy Engineering Works).
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APPENDIX

Proof of Lemma 1. As k → ∞, the forced oscillations at the output of system (1), (2) are
described by

yi(k) =
∞∑
j=1

ai(ωj) sin(ωjkh+ φi(ωj)), i = 1,m2, (A.1)

where ai(ωj) � 0 and φi(ωj) are the amplitudes and phases of the oscillations at the plant’s output
caused by the jth harmonic in the input signal (3).

The signal (A.1) describes the steady-state process at the plant’s output. At the time instant
tp = kph, it differs from the factual value of the plant’s output by at most 5% due to the dis-
crete function ei(k), which vanishes at the rate of a geometric progression. Therefore, the plant’s
output yi(k) will be considered below without these components.

In each coordinate of the vector y, the amplitudes of oscillations with the frequency ωj

in (A.1) are the absolute values of the corresponding components of the complex conjugate vectors

Tyw(e
jωjh)w

(j)
+ and Tyw(e

−jωjh)w
(j)
− , where

w
(j)
+ = [w1je

jφ1j , w2je
jφ2j , . . . , wmje

jφmj ]�,

w
(j)
− = [w1je

−jφ1j , w2je
−jφ2j , . . . , wmje

−jφmj ]�.

Indeed, the jth harmonic of the input vector w can be written as (w
(j)
+ ejωjkh −w

(j)
− e−jωjkh)/(2j).

We find a partial solution xcl(k) of the equations of the closed-loop system (1), (2) with w(k) =

w
(j)
+ ejωjkh. Let the closed-loop system equations be denoted by

xcl(k + 1) = Aclxcl(k) +Bclw(k),

y(k) = Cclxcl(k), k = 1, 2, . . . ,
(A.2)

where the matrix Acl has been described above, Bcl = [B�, 0�]�, and Ccl = [C, 0]. Substituting

w(k) = w
(j)
+ ejωjkh into the first formula of (A.2) yields

xcl(k + 1) = Aclxcl(k) +Bclw
(j)
+ ejωjkh.

The partial solution of the system is represented as xcl(k) = x(j)ejωjkh, where x(j) ∈C
n+nc is the

vector of complex numbers; then xcl(k + 1) = x(j)ejωj(k+1)h = x(j)ejωjhejωjkh. We substitute this
expression into (A.2) to obtain

x(j)ejωjhejωjkh = Aclx
(j)ejωjkh +Bclw

(j)
+ ejωjkh

and, after some simplifications,

x(j) =
(
ejωjkhI −Acl

)−1
Bclw

(j)
+ .

Then xcl(k) =
(
ejωjkhI −Acl

)−1
Bclw

(j)
+ ejωjkh and, considering y(k) = Cclxcl(k), it follows that

y+(k) = Tyw(e
jωjh)w(k),

where Tyw(e
jωjh) = Ccl

(
ejωjkhI −Acl

)−1
Bcl is the transfer matrix relating w to y. By analogy, for

w(k) = w
(j)
− e−jωjkh, we arrive at y−(k) = Tyw(e

−jωjh)w
(j)
− e−jωjkh.
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According to the superposition principle, for the jth harmonic of the output vector y with the
components from (A.1), it is easy to derive

(y+ − y−)/(2j) =
[
Tyw(e

jωjh)w
(j)
+ ejωjkh − Tyw(e

−jωjh)w
(j)
− e−jωjkh

]
/(2j).

Obviously, a2i (ωj) = yi−yi+, where yi− and yi+ are the ith components of the vectors y− and y+,
respectively. Then, in view of the diagonal structure of the matrix Q, we write

m2∑
i=1

qia
2
i (ωj) = y�−Qy+ = w

(j)
−

�
T�
yw(e

−jωjh)QTyw(e
jωjh)w

(j)
+ .

Considering the right-hand side of inequality (16), it follows that

m2∑
i=1

qia
2
i (ωj) � γ2w

(j)
−

�
w

(j)
+ = γ2

m∑
p=1

w2
pj

and, consequently, qia
2
i (ωj) � γ2w

(j)
−

�
w

(j)
+ = γ2

m∑
p=1

w2
pj, i = 1,m2.

Extracting the square roots of both sides of the last inequality yields

√
qiai(ωj) � γ

√√√√ m∑
p=1

w2
pj � γ

√√√√√⎛⎝ m∑
p=1

wpj

⎞⎠2

, i = 1,m2;

therefore,
√
qiai(ωj) � γ

m∑
p=1

wpj , i = 1,m2. Summing over all frequencies, we obtain

√
qi

∞∑
j=1

ai(ωj) � γ
m∑
p=1

∞∑
j=1

wpj, i = 1,m2.

Due to yi,st �
∞∑
j=1

ai(ωj), i = 1,m2, and (4), we finally get

√
qiyi,st � γ

m∑
p=1

∞∑
j=1

wpj � γ
m∑
p=1

w∗
p, i = 1,m2,

which implies (17).
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